Polynomial Batch Codes for Efficient IT-PIR
نویسنده
چکیده
Private information retrieval (PIR) is a way for clients to query a remote database without the database holder learning the clients’ query terms or the responses they generate. Compelling applications for PIR are abound in the cryptographic and privacy research literature, yet existing PIR techniques are notoriously inefficient. Consequently, no such PIRbased application to date has seen real-world at-scale deployment. This paper proposes new “batch coding” techniques to help address PIR’s efficiency problem. The new techniques exploit the connection between ramp secret sharing schemes and efficient information-theoretically secure PIR (IT-PIR) protocols. This connection was previously observed by Henry, Huang, and Goldberg (NDSS 2013), who used ramp schemes to construct efficient “batch queries” with which clients can fetch several database records for the same cost as fetching a single record using a standard, non-batch query. The new techniques in this paper generalize and extend those of Henry et al. to construct “batch codes” with which clients can fetch several records for only a fraction the cost of fetching a single record using a standard non-batch query over an unencoded database. The batch codes are highly tuneable, providing ameans to trade off (i) lower server-side computation cost, (ii) lower server-side storage cost, and/or (iii) lower unior bi-directional communication cost, in exchange for a comparatively modest decrease in resilience to Byzantine database servers.
منابع مشابه
Ryan Henry Polynomial Batch Codes for Efficient IT - PIR
Private information retrieval (PIR) is a way for clients to query a remote database without the database holder learning the clients’ query terms or the responses they generate. Compelling applications for PIR are abound in the cryptographic and privacy research literature, yet existing PIR techniques are notoriously inefficient. Consequently, no such PIRbased application to date has seen real-...
متن کاملExplicit Constructions and Bounds for Batch Codes with Restricted Size of Reconstruction Sets
Abstract. Linear batch codes and codes for private information retrieval (PIR) with a query size t and a restricted size r of the reconstruction sets are studied. New bounds on the parameters of such codes are derived for small values of t or r by providing corresponding constructions. By building on the ideas of Cadambe and Mazumdar, a new bound in a recursive form is derived for batch codes a...
متن کاملSublinear Scaling for Multi-Client Private Information Retrieval
Private information retrieval (PIR) allows clients to retrieve records from online database servers without revealing to the servers any information about what records are being retrieved. To achieve this, the servers must typically do a computation involving the entire database for each query. Previous work by Ishai et al. has suggested using batch codes to allow a single client (or collaborat...
متن کاملBatch and PIR Codes and Their Connections to Locally-Repairable Codes
Two related families of codes are studied: batch codes and codes for private information retrieval. These two families can be viewed as natural generalizations of locally repairable codes, which were extensively studied in the context of coding for fault tolerance in distributed data storage systems. Bounds on the parameters of the codes, as well as basic constructions, are presented. Connectio...
متن کاملNon-Interactive RAM and Batch NP Delegation from any PIR
We present an adaptive and non-interactive protocol for verifying arbitrary efficient computations in fixed polynomial time. Our protocol is computationally sound and can be based on any computational PIR scheme, which in turn can be based on standard polynomial-time cryptographic assumptions (e.g. the worst case hardness of polynomialfactor approximation of short-vector lattice problems). In o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PoPETs
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016